Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus.
نویسندگان
چکیده
Recent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation. Third, we found that exogenous application of histamine in either hippocampal CA1 or BLA of brain histamine-depleted rats, hence amnesic, restored long-term memory; however, the time frame of memory rescue was different for the two brain structures, short lived (immediately posttraining) for BLA, long lasting (up to 6 h) for the CA1. Moreover, long-term memory was formed immediately after training restoring of histamine transmission only in the BLA. These findings reveal the essential role of histaminergic neurotransmission to provide the brain with the plasticity necessary to ensure memorization of emotionally salient events, through recruitment of alternative circuits. Hence, our findings indicate that the histaminergic system comprises parallel, coordinated pathways that provide compensatory plasticity when one brain structure is compromised.
منابع مشابه
Differential effects of inactivation of the right and left basolateral amygdala on spatial memory in place avoidance task in rats
There is strong evidence that two cerebral hemispheres are differentially involved in emotional memory and that amygdala is a key subcortical structure for emotional experience. The present research investigated the possible involvement of lateralization of basolateral amygdala (BLA) and central amygdala (CEA) in place avoidance memory. For this purpose, male Long-Evans rats (280-320 g) were im...
متن کاملPKMζ contributes in consolidation, retrieval and maintenance of amygdala dependent fear memory in rats
Introduction: Protein kinase M zeta (PKMζ) is assumed to be actively involved in retainig long-term potentiation. The goal of this study was to investigate the role of PKMζ in basolateral amygdala (BLA) upon acquisition, consolidation, retention and retrieval of memory using a specific inhibitor of PKMζ. Methods: Sixty male wistar rats underwent stereotaxic surgery and were cannu...
متن کاملLearning-dependent plasticity of hippocampal CA1 pyramidal neuron postburst afterhyperpolarizations and increased excitability after inhibitory avoidance learning depend upon basolateral amygdala inputs.
Hippocampal pyramidal neurons in vitro exhibit transient learning-dependent reductions in the amplitude and duration of calcium-dependent postburst afterhyperpolarizations (AHPs), accompanied by other increases in excitability (i.e., increased firing rate, or reduced spike-frequency accommodation) after trace eyeblink conditioning or spatial learning, with a time-course appropriate to support c...
متن کاملInvolvement of α-1-adrenergic receptors in central region of amygdala and the effects of cannabinoid agonist on inhibitory avoidance memory in male rats
Introduction: There are many similarities between memory impairment in patients suffering from Alzheimer and animals treated by Cannabinoids. The agonists of Cannabinoid receptors affect on a variety of memories and leanings. The present study aims to investigate the role of α-1-adrenergic receptors in central region of amygdala in state-dependent learning induced by WIN55,212-2 (cannabin...
متن کاملEffect of Protein Malnutrition on Efferent Projections of Amygdala to the Hippocampus
ABSTRACTIntroduction: Previous investigations have shown that protein malnutrition can alters the structure and function of some areas of hippocampal formation. We investigated the effect of protein malnutrition on amygdaloid projections to the CA1 hippocampal area. In this study we investigated level and pattern of distribution of efferent projections from amygdala to hippocampus in the rat by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 19 شماره
صفحات -
تاریخ انتشار 2015